Description: Understanding Regression Analysis by Andrea L. Arias, Peter H. Westfall This book unifies diverse regression applications including the classical model, ANOVA models, generalized models including Poisson, Negative binomial, logistic, and survival, neural networks and decision trees under a common umbrella; namely, the conditional distribution model. FORMAT Hardcover LANGUAGE English CONDITION Brand New Publisher Description Understanding Regression Analysis unifies diverse regression applications including the classical model, ANOVA models, generalized models including Poisson, Negative binomial, logistic, and survival, neural networks, and decision trees under a common umbrella -- namely, the conditional distribution model. It explains why the conditional distribution model is the correct model, and it also explains (proves) why the assumptions of the classical regression model are wrong. Unlike other regression books, this one from the outset takes a realistic approach that all models are just approximations. Hence, the emphasis is to model Natures processes realistically, rather than to assume (incorrectly) that Nature works in particular, constrained ways.Key features of the book include: Numerous worked examples using the R software Key points and self-study questions displayed "just-in-time" within chapters Simple mathematical explanations ("baby proofs") of key concepts Clear explanations and applications of statistical significance (p-values), incorporating the American Statistical Association guidelines Use of "data-generating process" terminology rather than "population" Random-X framework is assumed throughout (the fixed-X case is presented as a special case of the random-X case) Clear explanations of probabilistic modelling, including likelihood-based methods Use of simulations throughout to explain concepts and to perform data analysesThis book has a strong orientation towards science in general, as well as chapter-review and self-study questions, so it can be used as a textbook for research-oriented students in the social, biological and medical, and physical and engineering sciences. As well, its mathematical emphasis makes it ideal for a text in mathematics and statistics courses. With its numerous worked examples, it is also ideally suited to be a reference book for all scientists. Author Biography Peter H. Westfall has a Ph.D. in Statistics from the University of California at Davis, as well as many years of teaching, research, and consulting experience, in a variety of statistics-related disciplines. He has published over 100 papers on statistical theory, methods, and applications; and he has written several books, spanning academic, practitioner, and textbook genres. He is former editor of The American Statistician, and a Fellow of the American Statistical Association.Andrea L. Arias is a Senior Operations Research Specialist at BNSF Railway. She has a Ph.D. in Industrial Engineering with a minor in Business Statistics from Texas Tech University, and a Doctoral Degree in Industrial Engineering from Pontificia Universidad Católica de Valparaiso, Chile. Her main areas of expertise include Mathematical Programming, Network Optimization, Statistics and Simulation. She is an active member of the Institute for Operations Research and the Management Sciences (INFORMS.) Table of Contents 1. Introduction to Regression Models 2. Estimating Regression Model Parameters3. The Classical Model and Its Consequences4. Evaluating Assumptions5. Transformations6. The Multiple Regression Model7. Multiple Regression from the Matrix Point of View8. R-squared, Adjusted R-Squared, the F Test, and Multicollinearity9. Polynomial Models and Interaction (Moderator) Analysis10. ANOVA, ANCOVA, and Other Applications of Indicator Variables11. Variable Selection12. Heteroscedasticity and Non-independence13. Models for Binary, Nominal, and Ordinal Response Variables14. Models for Poisson and Negative Binomial Response15. Censored Data Models16. Outliers, Identification, Problems, and Remedies (Good and Bad)17. Neural Network Regression 18. Regression Trees19. Bookend Review "...The authors suggest their book is suitable for those who are "research-oriented", regardless of any prior advanced training in statistics...I particularly like the emphasis on assumptions. Rather than discuss regression in idealized terms, Westfall and Arias are upfront about why assumptions are often wrong in practice, and what an analyst can do about violations. These discussions are woven into many of the chapters, and in some cases, they are featured in stand-alone chapters...I am a fan of learning statistics by doing, so the large amount of R code woven into the books chapters and the hands-on exercises at the end of each chapter are valuable and a welcomed feature of the book...To me, this textbook would be most suitable for a one-semester survey course in statistical methods for students outside of biostatistics or statistics. A motivated student could even use this book for self-study...Overall, I believe this is a worthwhile addition to the literature."- Ryan Andrews, ISCB News, June 2021 Details ISBN0367458527 Author Peter H. Westfall Publisher Taylor & Francis Ltd ISBN-10 0367458527 ISBN-13 9780367458522 Format Hardcover Subtitle A Conditional Distribution Approach Place of Publication London Country of Publication United Kingdom Illustrations 39 Tables, black and white; 173 Illustrations, black and white Year 2020 Short Title Understanding Regression Analysis Language English DEWEY 519.536 UK Release Date 2020-07-15 Pages 496 Publication Date 2020-07-15 AU Release Date 2020-07-15 NZ Release Date 2020-07-15 Alternative 9780367493516 Audience Tertiary & Higher Education Imprint Chapman & Hall/CRC We've got this At The Nile, if you're looking for it, we've got it. With fast shipping, low prices, friendly service and well over a million items - you're bound to find what you want, at a price you'll love! TheNile_Item_ID:141468447;
Price: 246.96 AUD
Location: Melbourne
End Time: 2024-11-05T02:47:07.000Z
Shipping Cost: 0 AUD
Product Images
Item Specifics
Restocking fee: No
Return shipping will be paid by: Buyer
Returns Accepted: Returns Accepted
Item must be returned within: 30 Days
ISBN-13: 9780367458522
Book Title: Understanding Regression Analysis
Number of Pages: 496 Pages
Language: English
Publication Name: Understanding Regression Analysis: a Conditional Distribution Approach
Publisher: Taylor & Francis Ltd
Publication Year: 2020
Subject: Computer Science, Mathematics
Item Height: 254 mm
Item Weight: 1116 g
Type: Textbook
Author: Andrea L. Arias, Peter H. Westfall
Item Width: 178 mm
Format: Hardcover